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Quantisation of velocity-dependent forces ai2 and ai4 

J Geicke 
Centro Tdcnico Aeroespacial, Instituto de Estudos Avanpados, 12231 Slo  JosC dos Campos, 
Slo  Paulo, Brazil 

Received 4 January 1989 

Abstract. ”he eigenvalue spectrum E , (  V, n, a) of normalisable states to the equation 
(ah/im)“cp(”-”(x) - ( h 2 / 2 m ) c p ” ( x ) + (  V ( x ) - E ) c p ( x )  =0, recently proposed as quantisa- 
tion of classical forces -ax“ -dV/dx, is discussed for even n. For n = 4 and a rectangular 
potential well an analytic argument shows that bound states for 0 < a < E, E -* 0, can exist 
only if E,( V, 4, a) + Elo’( V) as a + 0 where E/’)( V) are the eigenvalues of the corresponding 
conservative Schrodinger equation (a = 0). Numerical results indicate E,( V, 4, a) - 
E j o ’ ( V ) = c , ( V ) a 2 + O ( a 3 )  as a+O. For n = 2 ,  E, (V ,2 ,a ) -E{o) (V)=&2hZm-3  is exact 
and independent of V ( x ) ,  and at a potential step (to the left since a > 0) a continuous 
band of normalisable states exists instead of the scattering states for a = 0. 

1. Introduction 

Recently we proposed a new quantisation method [ 11 for the classical equation 

n > 0 integer, CY > 0. ( l a )  
dV mjt = -- 
ax 

We named the method ‘semicanonical’ since, in contrast with canonical quantisation, 
the conserved energy 

E =$mx2+ V ( x ) + a  x n  dx r 
rather than a (for CY # 0 only mathematical [ 2 ]  and not unique) Hamilton function is 
quantised. The further procedure is as in canonical quantisation of the conservative 
system corresponding to ( l a )  with CY = 0, i.e. the mechanical momentum mx (or slightly 
more generally, the canonical momentum of the corresponding conservative equation) 
and the energy E are substituted by the differential operators 

a 
E + i h - .  

a t  

Equations ( l b )  and (2a)  yield the Hamilton or energy operator 

H = He = Ho+ C Y H ~ .  

- h 2  a* 
H o = -  ?+ V ( X )  

2m ax 
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is the Hamilton operator of the corresponding conservative equation and 

the quantised form of the integral in ( 1  b ) ,  is a non-Hermitian operator, 
In [ 13 we studied the Schrodinger equation: 

a* ih-= He$ 
a t  

(4) 

and saw that eigenstates to He decay in time for odd n = 1 and 3. However, for n = 2 
stable eigenstates exist in the oscillator potential V,,, = fmm2x2 with eigenvalues 

a 2 h 2  
E,(Vo,,,2, a)=wh( l+;)+-  l = O ,  1 , 2  , . . . .  ( 5 )  2m3 

The results reflect that the classical force -ax" is dissipative only for odd n when the 
product 1" d x  in the integral of ( l b )  is always non-negative (x and d x  = x d t  have the 
same sign, d t  > 0). For even n the product has the same sign as x, i.e. the integral can 
add energy to or extract energy from the particle's energy imx2+ V(x),  depending on 
the direction of motion. If the particle during its motion passes several times through 
some point x then the integral in (1 b )  is, for even n, a unique function of x (which, 
however, depends on V and the initial values xo, x,) while for odd n it increases 
monotonically, independent of the direction of motion. In this wider sense, the force 
-axn, n even, can be considered as conservative. Nevertheless, throughout all the 
following the term 'conservative' refers only to the Hamilton operator ( 3 b ) ,  i.e. H = H,. 

Concerning the correspondence of our quantum results with the classical ones we 
would like to add the following to what was said in [ 11. For odd n, indeed, the quantum 
results could seem incomplete as they do not indicate into which states an eigenstate 
of He,  excited at t = 0, decays. However, even the classical solution to (la)-though 
it describes the motion of the particle completely-does not provide information about 
the further destination of the energy lost by the particle. The latter problem can be 
considered as analogous to the quantum mechanical one of which states an eigenstate 
of He decays into. The answer to both questions would require considering the particles 
of the dissipative medium, too, and therefore is beyond a one-particle theory, in 
classical as well as in quantum mechanics. 

To satisfy the uncertainty principle and, in the limit a + 0, to agree with the results 
of the corresponding conservative Schrodinger equation are two essential conditions 
that the quantum theory based on the Hamilton operator (3a)  can be considered a 
consistent theory. The first is guaranteed in the proposed quantisation because of (2), 
and it is relatively easy to see that the second is true for n = 1 , 2  and 3 [l]. But for 
n 3 4 the Schrodinger equation with the Hamilton operator (3a)  is of order higher 
than two in the spatial variable x. Since the coefficient of the highest-order derivative 
is proportional to a a singularity of the general solution in a = 0 must be expected, 
This could make impossible a smooth relationship between the results for Ho and 
those for He in the limit a + 0. 

This question will be examined in § 2. Since the difficulties in handling the problem 
increase rapidly with n we choose n = 4 and, to deal with an exactly solvable problem, 
consider bound states in a rectangular potential well. But bound states for even n are 
also of proper interest because of the qualitative difference between classical even- 
and odd-power 1" forces. Therefore in § 3 bound states for n = 2 will be investigated 
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in a general binding potential and at a potential step. All results can be interpreted 
in a consistent manner. They will be summarised in 0 4. 

2. The limit cy -+ 0 and bound states for n = 4 

For n = 4 (3c) and (4) with 

444 t )  = P ( X )  exp(Et/ih) 

yield the stationary Schrodinger equation 

m 3  m4 
2ah ah  P ” ’ ( X ) - - - - - - ; C ~ ” ( X ) + ~ ( V ( X ) -  E)cp(x)=O. 

A prime denotes differentiation with respect to x. 

2.1. General solution for a rectangular well 

Equation (6b )  is exactly solvable for a rectangular potential well: 
i f x < 0  

i f a < x .  
v ( x ) = [  %vo<o i f O < x < a  (6c)  

Three fundamental solutions are qfund,, = exp( w i x ) ,  i = 1 , 2  and 3. The constants wi 
solve the cubic equation 

We are interested in the solutions for energies - Vo < E < 0 and small positive a such 
that 

d = 27a2k -4b3 <O.  (8) 

For x < 0 and x > a > 0 the constant k is positive: 

Equation (8) implies dk<0,  and (7 )  has three real solutions [ 3 ] :  

(9b) 
b 

3 a  
wl,,=hl,*=-[-2 cos(yF$T)+l ]  

b 
3 f f  

w3 = h3 =- ( 2  COS y +  1) 

where 

y = f  Cos-’(l -27a2k1/2b3). 

For 0 < x < a the constant k is negative: 
m4 

k = k 2 = - a ( V o + E )  
A 
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and dk > 0 for all a. In this case two solutions of (7) are conjugate complex and one 
is real: 

( lob)  w1,2 = P * iP 

p, p and z are defined as 

1 
z =- [9a(27a2k: -4b3k2)li2 -8 (27a2k2 -2b3)] m 

and z1l3 is the real value of the cubic root. 
The solutions (9) and (10) behave in the following way as a + 0: 

1/2  

A1,2=F(2) + O ( a )  

A3 =-+ O ( a )  
b 
a 

P = 

1/2 .=($) + O ( a )  

Thus, A 3  and v are singular in a = 0 while A,,2 and p * ip tend to the solutions of the 
quadratic equation -ih2w2/m + h4ki/m4= 0, i = 1 and 2, related to the corresponding 
conservative Schrodinger equation. From (1 1) one concludes that, for small positive 
a, normalisable (square integrable) solutions of (6b, c) have the form 

v1 = A2 exp(A2x) + A3 exp(h3x) i fx<O 
if 0 < x < a 

p3 = C1 exp(Alx) i f a < x .  
(p2 = ( B ,  sin p x  + B2 cos px)  exp(px) + B3 exp( vx) (12) 

2.2. Eigenvalue equation 

It follows from (6b, c) that ap"' has a finite discontinuity in x = 0 and in x = a where 
the potential V(x) is not continuous. Then, for a > 0, Q", Q' and cp must be continuous. 
The six continuity conditions 

QDl"(0) = QO'i"(0) & ) (a )  = # ( a )  j=o,1,2 (13) 
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(and the normalisation) determine the six constants A , ,  A , ,  B , ,  B , ,  B, and C, of a 
bound state (12). Eliminating A, ,  A , ,  B ,  and C,, we reduce the system (13) to two 
homogeneous equations for B2 and B , :  

where 

f2= ( -p + sp - S A , )  sin pa + ( p + s p  - A l )  cos pa 

f 3  = t (p  - A l )  sin pa + t p  cos pa + ( v -  A,)exp[( v - p ) a ]  

(14c) 

(14d) 

(14e) 

(14f 1 

g, = [ - 2 p p  - s(A:+ p2 -p2)] sin p a  + ( p 2 - p 2 -  A i + 2 s p p )  cos pa 

g, = t(p2 - p2  - A :) sin pa + 2tpp cos p a  + ( v2 - A:) exp[ ( v - p ) a ]  

v2-vA2-  vA3+A2A3 
t =  (14h) 

p ( A 2 + h 3  -2P) ‘ 

The condition that a non-trivial solution (A, ,  A, ,  B , ,  B, ,  B , ,  C , )  f (0, 0, 0, O,O,  0) 
exists is now reduced to the condition that the determinant of (14a, 6)  vanishes: 

f2g3 - h g 2  = O. (15) 

In 0 2.3 it will be examined if and how the solutions E = E,( V, 4, a )  of (15) and the 
eigenvalues E!’’( V), 1 = 0, 1,2,  . . . , of the conservative Schrodinger equation are related 
to each other. 

2.3. Solutions of the eigenvalue equation 

From (11) and (14) one sees that s, t, fi and g, are regular in a = O  while the leading 
singularities are v2  exp( v u )  - b2a- ,  exp(ba/a)  in g, and v exp( vu)  - ba-’ exp( b a / a )  
in f3. One concludes that, for 0 < a < E ,  E + 0, (15) cannot be satisfied unless f, = O( a )  
as a + O .  Using (11) and (14) one can rewrite this condition in order 0 ( 1 )  as 

( -  k ,  k2)”, 
= 0. 

tan[ ( + ) 1 ’ 2 a ]  + 2  kl + k2 
The textbooks of quantum mechanics [4] show that (16) is just the condition which 
determines the eigenvalues E{’’ of the bound states to the conservative Schrodinger 
equation ( a  = 0) with the potential (6c). That is, bound states to (6b, c) cannot exist 
for arbitrarily small positive values of a unless their eigenvalues E,( V ,  4, a )  in the 
limit a + 0 tend to the eigenvalues E/’)( V). 

To verify if solutions exist for small positive a we have solved (15) numerically 
for V,= -1, a = 1 and Vo= -10, a = 1, setting m = h = 1. In the first example the 
conservative Schrodinger equation has one bound state for E = Ebo’( V) = -0.3079.. . , 
and in the second one two bound states for E =EbO’(V)=-7.7050 . . .  and E = 
E\’’( V) = -1.8628 . . . . Since f3 and g, tend to infinite values as a + 0, the numerical 
solution has been carried out for a 5 0.005 and in double precision (corresponding to 
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Table 1.  E,( V(J, I = 0, 1, are the numerical solutions of (15) for a > 0 and of (16) for a = 0, 
all with a = 1. The exact solutions E,( V, 4, a )  and € i o ’ (  V) lie between E,( V,) and E,( V,)  - 

The calculations of Eo( Vo) have not been continued to values of a where d ( k  = k , ,  a j 
(cf (8)) is positive in the energy region of the bound state. (This would require another 
ansatz for x<O and a < x  in (12).) 

a Eo( vo = - 1 1 E”( V” = -10) E, (  vo = -10) 

0 
0.005 
0.010 
0.020 
0.030 
0.040 
0.049 
0.050 
0.100 
0.150 
0.200 
0.220 
0.240 
0.241 34 
0.250 
0.270 
0.280 

-0.307 921 59 
-0.307 865 68 
-0.307 701 25 
-0.307 067 71 
-0.306 064 96 
-0.304 739 28 

-0.303 137 41 
-0.292 460 42 
-0.280 079 56 
-0.267 928 96 
-0.263 300 47 
-0.258 830 52 

-0.256 656 89 
-0.252 433 22 

d(ki 1 > 0 

-7.705 009 25 
-7.703 300 17 
-7.698 391 02 
-7.680 138 56 
-7.652 343 91 
-7.616 828 01 
-7.579 602 73 

d ( k , ) > O  

-1.862 852 23 
-1.853 757 06 
- 1.827 468 67 
-1.731 40999 
-1.593 518 19 
-1.432651 93 

-1.263 934 23 
-0.551 375 18 
-0.172 113 42 
-0.025 763 65 
-0.006 030 47 
-0.000 021 08 

- ~ o - ~ < E , < o  

approximately 29 decimal places during computation). The results are shown in table 
1 and indicate 

E,( v, 4, a )  - E ~ o ) (  v) = c,( v)a2+o(a3) as a + +O. (17) 

The presence of a term proportional to a3 and higher odd orders of a in (17) does 
not mean that E,( V, 4, a )  cannot be symmetric with respect to a = 0. The results above 
are, of course, only valid for non-negative a, due to the asymptotic behaviour of (12). 

The smoothness (17) of the eigenvalues in a = 0 suggests the following behaviour 
of the coefficients in (12): 

A 3 ( a )  = O(a2)  B3(a)  = O ( a z  exp(-bala))  as a + +O. (18)  

Then, in the limit a++O, A,exp(A,x) and B3exp(vx) do not contribute to the 
continuity conditions (13) for j = O ,  1 while for j = 2  they give a finite non-zero 
contribution. In other words, the singular part of the solution (12) does not affect the 
continuity conditions of the conservative problem. 

3. Bound states of He = Ho- ah’m-*a/ax 

3.1. Bound states in a general binding potential 

For n = 2 one obtains from (3) the stationary Schrodinger equation 

2cY 2m 
m A 

cp”(x) +- c p ’ ( ~ )  + 7 ( E  - V(x))cp( X )  = 0. 
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Let V(x) be a general binding potential and xt a bound state of the conservative 
Schrodinger equation: 

(20) 
2m 
h 

x ” ( x ) + ,  ( E  - V ( x ) ) x ( x )  = 0 

with eigenvalue E = E:”( V). Setting x,(x) = cpl(x) exp(ax/m) in (20), one gets 
2m [ cp; +& m c p i  + (- h2 (E io’ - V ( x ) )  +<) m pf ] exp( ax /m)  = 0 

is an eigenfunction of (19) with eigenvalue 
El( V, 2, a )  = E$’)( V)+a2h2/2m3.  (21c) 

The result (21b, c) generalises ( 5 ) ,  found for the harmonic oscillator [ l ]  and is not 
restricted to bound states xi and/or cpf only. 

In order that, with xI, cpf also be a bound state two conditions must be fulfilled: 
a 2 h 2  

Ej”+- < V(“ 
2m3 

--co<X. (22b) 

They are satisfied for the harmonic oscillator since V(ioo)=-co and x I -  
x f  exp(-imwx2h-’) as x +  fa. For a potential which has a constant value V(x) = 
V(f03) for large arguments 1x1 > xo, both conditions are equivalent. This can be seen 
from the asymptotic behaviour 

xI  - exp{[ -2m(E!’’ - V ( * a ) ) ]  ‘I2x/ h }  if x < -xo. (23) 

3.2. Bound states at a potential step 

Let us now consider (19) for a potential step: 
0 i f x < 0  

V ( x )  = {-V0<O i fx>O. 

In contrast to the conservative case a = 0, for a > 0 square integrable solutions with 
energies - Vo< E < O  exist to (19) and (24): 

cp-=Aexp[(y-a/m)x]  i fx<O 
D1 e x p [ ( f i  - a /  m)x] + D2 exp[( -4- a /m)x]  
(03+D4x)  exp(-ax/m) 
( D5 s i n m x  + D6 c o s m x )  exp( -ax /m)  

if 6 > 0, x > 0 
if S = 0, x > 0 
if 6 <0,  x > 0 

(252) 
where 

a 2  2m a 2  
( E  + V,) <ye 

m 
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For all energies - Vo < E < 0, cp- and cp+ can be joined in x = 0 such that cp and cp’ are 
continuous and cp is normalised to 1. The binding mechanism at large positive x works 
for all positive a. With decreasing values of a the binding strength becomes weaker, 
and the probability to find the particle at large positive values of x increases. Clearly, 
this binding mechanism would work at a potential step on the RHS,  i.e. V(x) = - Vo < 0 
i f x < O a n d  V ( x ) = O i f x > O , o n l y i f  a < 0 .  

We emphasise that the bound states have a continuous band - Vo< E < O  of 
eigenvalues since both fundamental solutions of (19) and (24) decay exponentially as 
x++00 (cf ( 2 5 ~ ) ) .  For 6 3 0  they have energies -Vo< E s - V , + $ C Y ’ ~ ~ ~ - ~  and arise 
from physically uninteresting solutions of (20) with energy E(’)< - V,. Bound states 
( 2 5 )  with 6 < O  correspond to scattering states of (20) with -Vo< E(’)< - i h 2 a 2 m - 3  
(in agreement with (21)). In the limit a + 0 the bound states (25) tend to the scattering 
states of (20) since then only 6 < O  is realised and exp(-ax/m)+ 1. 

A continuous band -Vo< E < O  of bound states at the potential step (24) is also 
expected for n = 4  in (3c) (a>O):  namely, if Al,2,3 are the solutions of (7) for x<O, 
it followsfrom - (A ,+h2+h3)=-b /a<Oand-h ,A2h3= k / a > O t h a t t w o o f t h e m a r e  
positive or have a positive real part. For x > 0 one can see from ( l O a , f )  that z > b 
and then from (10d) and the inequality y + l / y  > 2, valid for positive y # 1, that p < 0, 
i.e. two solutions of (7) have a negative real part (while the third solution is positive). 
Thus there are four constants available to make cp, cp’ and cp” continuous in x = 0 (and 
to normalise cp). On the other hand, for n = 1 one will find scattering states at the 
potential step which decay in time as exp(-at/m) [ l ]  since the classical force -ax is 
dissipative for a > 0. 

For comparison let us consider a classical particle obeying (1 a )  with (24) and even 
n. Suppose that its initial position xo > 0 and velocity io # 0 are such that the motion 
is restricted by (24) to the positive half-axis x > 0. Then, for t + 00 the particle tends 
to x = +CC with velocity x + 0. The motion is not bounded to a finite region, and the 
particle loses energy. To avoid both, a small perturbation would be necessary which 
could give the particle a small velocity in the negative direction. In quantum mechanics 
such small perturbations are always present in the form of small velocity fluctuations, 
as a consequence of the uncertainty principle. For this reason stable bound states of 
the energy operator (3a-c) can exist at the potential step (24) for n = 2 and are expected 
to exist also for greater even n. 

4. Summary 

We have discussed the quantisation of velocity-dependent forces ax2 and ax4. One 
main result is that also for (integer) n > 3  agreement with the conservative quantum 
results can be obtained in the limit a + 0, as shown explicitly for a rectangular potential 
well and n = 4. This result also confirms the existence of stable bound states for an 
even n different from n = 2. As for n = 2 also for n = 4 the energy levels of He are 
higher than the corresponding levels of H,, due to the exchange energy between the 
particle and the medium which provides the interaction aHi.  But for n = 4  the 
energy shift depends on the potential V(x) and on the quantum number of the bound 
state. 

For n = 2 the quantitative relationship (21 b, c) between the solutions ofthe conserva- 
tive Schrodinger equation (20) and those of (19) has been shown for general potentials 
V(x). A new effect was found at a potential step (to the left). There, instead of the 
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scattering states for a =0, a continuous band of bound states exists in the presence 
of the interaction -ah2m-2d/dx .  Such a binding effect is also predicted for n = 4. 

The existence of stable bound states is readily interpretable by the fact that, for 
even n, the classical force -ax" is not dissipative and by the uncertainty principle. 
Since for odd n = 1, 3 one-particle quantum states decay in time [ 11 we conclude that 
the proposed quantisation of (1 b )  reflects the qualitative difference between even- and 
odd-power x"  forces present on the classical level. In this sense the results presented 
here for even n are complementary to the former ones for odd n and can serve as one 
more (this time a posteriori) justification of the method. 
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